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Administrivia

● No discussion today
● Midterm tomorrow

○ Bring your laptops to get started in class!
○ Due Friday night



Inputs

Output

Neurons

“neural network”

How would you draw and write this neural network?
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Number of output regions
● In general, each output consists of multi-dimensional convex polytopes
● With two inputs, and three hidden units, we saw there were seven 

polygons for each output:

Polytope -- Wikipedia
In elementary geometry, a 
polytope is a geometric object 
with flat sides (faces). Polytopes 
are the generalization of 
three-dimensional polyhedra to 
any number of dimensions. 
Polytopes may exist in any general 
number of dimensions n as an 
n-dimensional polytope or 
n-polytope.

https://en.wikipedia.org/wiki/Polytope


Why does flat matter?

● Neural networks with only ReLU activation functions are piecewise 
linear.

● Each output region is a linear function. 



What does a linear function look like?



Neural networks have continuous output

This is not particularly easy for a 
neural network.



Neural networks have continuous output

Not a vertical line!

Also, making that line steeper 
requires matching changes to 
keep next line flat.

Smoothing does not help.



My Obsession with Neural Fields

Neural field = neural network taking in coordinates as input and outputting 
some quantity related to that position.

● One of the homework notebooks used them to recreate images.
● Very visual way to see the biases of neural networks.

○ Many blurry images
○ Also some networks that got stuck and effectively just trained constants.

I also have some research related to them, but that’s another story.



 

Recap
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Gradient descent algorithm

 



Deep Learning depends on Gradient Descent

The majority of making deep learning work is making gradient descent 
behave!

● He initialization
○ Avoid exploding or vanishing values and gradients at first step.
○ Does not guarantee that values and gradients stay well behaved after many steps.

● Batch layer normalization
○ Keep values and gradients well behaved as parameters change.
○ Messes up our neat pictures before, but stability is worth it.

● Residual networks
○ Make output computation more incremental
○ Add short gradient paths from intermediate layers to output
○ Requires functional form change, limits output shape.
○ Still needs some kind of normalization with many layers.



Backpropagation with Matrix Operations

(k-1) more of these when fully unwound



Initialization

Perhaps an obvious point -

● Initializing all parameters to zero is degenerate.
○ All units within a layer will see the same gradients.
○ All units within a layer will get the same updates.
○ All units within a layer will represent the same function.
○ All layers effectively become one wide.

● Generally do not want to start with any symmetries within layers
○ Different initializations are opportunities to learn different useful things.
○ Motivates random initializations.



Initialize weights to different variances

Exploding 
gradients

Vanishing 
gradients

 



He initialization (assumes ReLU)
● Forward pass:  want the variance of hidden unit activations in layer k+1 to be 

the same as variance of activations in layer k:

● Backward pass:  want the variance of gradients at layer k to be the same as 
variance of gradient in layer k+1:

Number of units at layer 
k

Number of units at layer 
k+1



This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

What’s going on?
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200 hidden units each layer200 hidden units

 

A small step in gradient descent may jump to wildly 
different valued gradient!

Gradients of deeper 
networks are much less 
correlated!

The Shattered Gradient Phenomenon



Residual Network as Ensemble of Networks
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Exploding Gradients in Residual Networks

Could stabilize by renormalizing after adding 
each residual.

More common to apply batch normalization.



Batch Normalization (a.k.a. BatchNorm)

● Shifts and rescales each activation so that its mean and variance across 
the batch become values that are learned during training
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Calculate the sample mean and 
standard deviation for each hidden unit 
across samples of the batch.

Standardize (normalize) to zero-mean and unit 
standard deviation.

 

^
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Convolution with kernel size 3

Equivariant to translation of 
input



Receptive fields
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Performance



Why?
● Better inductive bias
● Forced the network to process each location similarly
● Shares information across locations
● Search through a smaller family of input/output mappings, all of which are 

plausible



Practical Tips

Plot your losses frequently.

● Most examples plot every 10-50 epochs. I plot every one if suspicious.
● If jagged, learning rate is too high.
● If flat, look at gradients.



Practical Tips

Consider plotting some measure of gradient values.

● I often just use sum of absolute values over all parameters…
● If the gradients go to zero, your network is done training whether you 

like it or not.



Practical Tips

Stochastic gradient descent is your friend.

● It is easier to write full batch gradient descent.
● But mini batches tend to be way faster and almost as good loss 

improvements.



Practical Tips

Bigger networks probably fit better, after you get smaller networks working.

● Test your setup on smaller networks first.
● If your loss improves for a while and then flattens out, maybe a bigger 

network?
● If you cannot get your loss to improve at all on a small network, just 

going bigger is not likely to help.



Practice Today

Repeat last (current) homework with FashionMNIST.

● https://github.com/zalandoresearch/fashion-mnist

● https://github.com/DL4DS/fa2024/blob/main/static_files/assignments/10
_notebook.ipynb

● https://pytorch.org/vision/0.19/generated/torchvision.datasets.FashionM
NIST.html

https://github.com/zalandoresearch/fashion-mnist
https://github.com/DL4DS/fa2024/blob/main/static_files/assignments/10_notebook.ipynb
https://github.com/DL4DS/fa2024/blob/main/static_files/assignments/10_notebook.ipynb
https://pytorch.org/vision/0.19/generated/torchvision.datasets.FashionMNIST.html
https://pytorch.org/vision/0.19/generated/torchvision.datasets.FashionMNIST.html


Feedback?


