
Deep Learning for Data Science
DS 542

Midterm Review

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Administrivia

● No discussion today
● Midterm tomorrow

○ Bring your laptops to get started in class!
○ Due Friday night

Inputs

Output

Neurons

“neural network”

How would you draw and write this neural network?

3

Number of output regions
● In general, each output consists of multi-dimensional convex polytopes
● With two inputs, and three hidden units, we saw there were seven

polygons for each output:

Polytope -- Wikipedia
In elementary geometry, a
polytope is a geometric object
with flat sides (faces). Polytopes
are the generalization of
three-dimensional polyhedra to
any number of dimensions.
Polytopes may exist in any general
number of dimensions n as an
n-dimensional polytope or
n-polytope.

https://en.wikipedia.org/wiki/Polytope

Why does flat matter?

● Neural networks with only ReLU activation functions are piecewise
linear.

● Each output region is a linear function.

What does a linear function look like?

Neural networks have continuous output

This is not particularly easy for a
neural network.

Neural networks have continuous output

Not a vertical line!

Also, making that line steeper
requires matching changes to
keep next line flat.

Smoothing does not help.

My Obsession with Neural Fields

Neural field = neural network taking in coordinates as input and outputting
some quantity related to that position.

● One of the homework notebooks used them to recreate images.
● Very visual way to see the biases of neural networks.

○ Many blurry images
○ Also some networks that got stuck and effectively just trained constants.

I also have some research related to them, but that’s another story.

Recap

10

Gradient descent algorithm

Deep Learning depends on Gradient Descent

The majority of making deep learning work is making gradient descent
behave!

● He initialization
○ Avoid exploding or vanishing values and gradients at first step.
○ Does not guarantee that values and gradients stay well behaved after many steps.

● Batch layer normalization
○ Keep values and gradients well behaved as parameters change.
○ Messes up our neat pictures before, but stability is worth it.

● Residual networks
○ Make output computation more incremental
○ Add short gradient paths from intermediate layers to output
○ Requires functional form change, limits output shape.
○ Still needs some kind of normalization with many layers.

Backpropagation with Matrix Operations

(k-1) more of these when fully unwound

Initialization

Perhaps an obvious point -

● Initializing all parameters to zero is degenerate.
○ All units within a layer will see the same gradients.
○ All units within a layer will get the same updates.
○ All units within a layer will represent the same function.
○ All layers effectively become one wide.

● Generally do not want to start with any symmetries within layers
○ Different initializations are opportunities to learn different useful things.
○ Motivates random initializations.

Initialize weights to different variances

Exploding
gradients

Vanishing
gradients

He initialization (assumes ReLU)
● Forward pass: want the variance of hidden unit activations in layer k+1 to be

the same as variance of activations in layer k:

● Backward pass: want the variance of gradients at layer k to be the same as
variance of gradient in layer k+1:

Number of units at layer
k

Number of units at layer
k+1

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

What’s going on?

17

200 hidden units each layer200 hidden units

A small step in gradient descent may jump to wildly
different valued gradient!

Gradients of deeper
networks are much less
correlated!

The Shattered Gradient Phenomenon

Residual Network as Ensemble of Networks

18

Exploding Gradients in Residual Networks

Could stabilize by renormalizing after adding
each residual.

More common to apply batch normalization.

Batch Normalization (a.k.a. BatchNorm)

● Shifts and rescales each activation so that its mean and variance across
the batch become values that are learned during training

20

Calculate the sample mean and
standard deviation for each hidden unit
across samples of the batch.

Standardize (normalize) to zero-mean and unit
standard deviation.

^

^

Convolution with kernel size 3

Equivariant to translation of
input

Receptive fields

22

Performance

Why?
● Better inductive bias
● Forced the network to process each location similarly
● Shares information across locations
● Search through a smaller family of input/output mappings, all of which are

plausible

Practical Tips

Plot your losses frequently.

● Most examples plot every 10-50 epochs. I plot every one if suspicious.
● If jagged, learning rate is too high.
● If flat, look at gradients.

Practical Tips

Consider plotting some measure of gradient values.

● I often just use sum of absolute values over all parameters…
● If the gradients go to zero, your network is done training whether you

like it or not.

Practical Tips

Stochastic gradient descent is your friend.

● It is easier to write full batch gradient descent.
● But mini batches tend to be way faster and almost as good loss

improvements.

Practical Tips

Bigger networks probably fit better, after you get smaller networks working.

● Test your setup on smaller networks first.
● If your loss improves for a while and then flattens out, maybe a bigger

network?
● If you cannot get your loss to improve at all on a small network, just

going bigger is not likely to help.

Practice Today

Repeat last (current) homework with FashionMNIST.

● https://github.com/zalandoresearch/fashion-mnist

● https://github.com/DL4DS/fa2024/blob/main/static_files/assignments/10
_notebook.ipynb

● https://pytorch.org/vision/0.19/generated/torchvision.datasets.FashionM
NIST.html

https://github.com/zalandoresearch/fashion-mnist
https://github.com/DL4DS/fa2024/blob/main/static_files/assignments/10_notebook.ipynb
https://github.com/DL4DS/fa2024/blob/main/static_files/assignments/10_notebook.ipynb
https://pytorch.org/vision/0.19/generated/torchvision.datasets.FashionMNIST.html
https://pytorch.org/vision/0.19/generated/torchvision.datasets.FashionMNIST.html

Feedback?

